Biopharmaceutical Engineering
Overview
Biopharmaceutical products are highly important in today’s global healthcare systems in treating illnesses and disease. The industry in the British Isles has seen significant investment, particularly in the Republic of Ireland (RoI) where there has been capital investment of approximately £7.97 billion in new facilities, mostly in the last 10 years. The global market for biopharmaceuticals was valued at £149 billion in 2017, and is projected to reach £419 billion by 2025, growing at an annual rate of 13.8% from 2018 to 2025. As a result, over 30,000 highly skilled people are currently employed in Ireland north and south with new companies setting up facilities in RoI every year. The increased uptake of skilled biopharmaceutical employees has necessitated the need for a high quality education in this sector.
Queen’s University Belfast School of Chemistry and Chemical Engineering has a proven track record for delivering high quality teaching and research and has launched the MSc in Biopharmaceutical Engineering from this platform. This programme will provide students with the knowledge and skills required to work in the field of biopharmaceutical production, separation and purification by applying fundamental science and engineering principles. Through studying this postgraduate taught MSc, graduates will be able to gain a highly relevant qualification which will give them employability on an international level.
Through the use of theory and mathematical approaches to engineering problems, students will understand and become skilled in the development of systems which can facilitate biopharmaceuticals production and their subsequent purification.
This course is run in collaboration with our industrial partner Eli Lilly, a global company with excellent standing in the field of pharmaceutical and biopharmaceutical production and commercialisation. A collaborative course of this nature is the first of its kind in the British Isles and will provide students with real-world knowledge of how these systems are operated in an industrial setting through the case studies and first-hand knowledge imparted by the academics and industry staff delivering the course.
Course Structure
The MSc is awarded to students who successfully complete all six taught modules (120 CATS points) and a 15,000 - 20,000 word research dissertation (60 CATS points).
Exit qualifications are available - students may exit with a Postgraduate Diploma by successfully completing 120 CATS.
Subjects taught
Semester One modules
CHE7401 Medicinal Chemistry
CHE7402 Biopharmaceuticals & Upstream Processing
CHE7403 Chemical Engineering Principles
CHE7401 Medicinal Chemistry
The purpose of this module is to provide students with the knowledge of the inception of a biopharmaceutical product, what it is made from in terms of chemistry and how it will act in the body. The module is split into three lecture series: Drug Discovery, Proteins and Pharmacology.
Within each of these series there will be lectures which will look at each of the three areas in detail. This module will be delivered by staff from Chemistry and as such there will be key understanding and information imparted by leading medicinal chemists whose expertise has been instrumental in advancing the research intensity of our School.
The module is assessed on an ongoing continual assessment basis –workshops, questions/problems and short essays on journals will be used (100% coursework).
CHE7402 Biopharmaceuticals & Upstream Processing
This module will begin the introduction of biopharmaceuticals to students, the need and context for biopharmaceutical products and also what form they may take depending on the needs of the patient. The module is split into two lecture series, Biopharmaceuticals being the first and Upstream Processing the second.
This module will be assessed by a mix of formal examination (60%) and tutorials (40%).
CHE7403 Chemical Engineering Principles
The third of the first semester modules will look at the principles which are applied to chemical engineering in terms of kinetics, heat and mass transport and also thermodynamics. This module will provide students with an advanced understanding of the theory of Chemical Engineering and why these principles must be adhered to in a chemical process especially in the production of a biopharmaceutical product.
There will be a considerable mathematical element to this module and as such there is significant emphasis on the workshops provided in the module. These are assessed and will make up 75% of the available marks for the module. The remaining 25% is based on tutorial work.
Semester Two modules
CHE7404 Bioreactor Design and Bioprocess Control
CHE7405 Separations, Downstream Processing and Bioanalytical Science
CHE7406 Regulatory Affairs and Quality Systems
CHE7404 Bioreactor Design and Bioprocess Control
The content of this module will look in detail at the design of specific reactors for the carrying out of a chemical process with particular reference being made to the production of proteins in a biopharmaceutical setting. The theory which will be applied throughout this module will align with the previous module (Chemical Engineering Principles) and use the principles of chemical engineering to inform the decisions to be made when designing a reactor for a specific function. This module will be assessed through the use of workshop problems and a small design project with presentation.
CHE7405 Separations, Downstream Processing and Bioanalytical Science
Entry requirements
Graduate
Normally a 2.2 Honours degree or equivalent qualification acceptable to the University in Chemical Engineering, Chemistry, Pharmacy, Biochemistry or closely allied subject.
Applicants with relevant work experience will be considered on a case-by-case basis.
The University's Recognition of Prior Learning Policy provides guidance on the assessment of experiential learning (RPEL). Please visit the link below for more information.
http://go.qub.ac.uk/RPLpolicyQUB
Application dates
Applicants are advised to apply as early as possible and ideally no later than 30th June 2025 for courses which commence in late September. In the event that any programme receives a high number of applications, the University reserves the right to close the application portal prior to the deadline stated on course finder. Notifications to this effect will appear on the application portal against the programme application page.
Please note: a deposit will be required to secure a place.
Duration
1 year (Full-time), 2 years (Part-time)
Enrolment dates
Entry Year: 2025/26
Post Course Info
Career Prospects
This MSc will equip you with the knowledge and skills required for a successful career in a biopharmaceutical industrial setting as a process engineer, analytical scientist or related role. Alongside this, with the skills obtained through this MSc you will have increased your opportunity of job placements in multiple career positions.
More details
Qualification letters
MSc
Qualifications
Degree - Masters at UK Level 7,Postgraduate Diploma at UK Level 7
Attendance type
Full time,Daytime,Part time
Apply to
Course provider